Design of three-dimensional origami structures based on a vertex approach
نویسندگان
چکیده
Origami geometric design is fundamental to many engineering applications of origami structures. This paper presents a new method for the design of three-dimensional (3D) origami structures suitable for engineering use. Using input point sets specified, respectively, in the x−z and y−z planes of a Cartesian coordinate system, the proposed method generates the coordinates of the vertices of a folded origami structure, whose fold lines are then defined by straight line segments each connecting two adjacent vertices. It is mathematically guaranteed that the origami structures obtained by this method are developable. Moreover, an algorithm to simulate the unfolding process from designed 3D configurations to planar crease patterns is provided. The validity and versatility of the proposed method are demonstrated through several numerical examples ranging from Miura-Ori to cylinder and curved-crease designs. Furthermore, it is shown that the proposed method can be used to design origami structures to support two given surfaces.
منابع مشابه
A New Three-Dimensional Sector Element for Circular Curved Structures Analysis
In this research paper, the formulation of a new three-dimensional sector element based on the strain approach is presented for plate bending problems and linear static analysis of circular structures. The proposed element has the three essential external degrees of freedom (Ur, Vθ and W) at each of the eight corner nodes. The displaceme...
متن کاملOptimal Design of Geometrically Nonlinear Structures Under a Stability Constraint
This paper suggests an optimization-based methodology for the design of minimum weight structures with kinematic nonlinear behavior. Attention is focused on three-dimensional reticulated structures idealized with beam elements under proportional static loadings. The algorithm used for optimization is based on a classical optimality criterion approach using an active-set strategy for extreme lim...
متن کاملFolding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures
Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease l...
متن کاملDNA origami technology for biomaterials applications
REVIEW ARTICLE Masayuki Endo, Hiroshi Sugiyama et al. DNA origami technology for biomaterials applications Biomaterials Science REVIEW DNA origami is an emerging technology for designing and constructing defined multidimensional nanostructures. This technology is now expanding to materials science. This article introduces the basics of DNA origami, the design of various two-dimensional and thre...
متن کاملOrigami by frontal photopolymerization
Origami structures are of great interest in microelectronics, soft actuators, mechanical metamaterials, and biomedical devices. Current methods of fabricating origami structures still have several limitations, such as complex material systems or tedious processing steps. We present a simple approach for creating three-dimensional (3D) origami structures by the frontal photopolymerization method...
متن کامل